11 класс

Переменный ток

Переменный ток – или AC (Alternating Current). Обозначение (~).
Электрический ток называется переменным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.




КВАНТОВЫЕ ПОСТУЛАТЫ НИЛЬСА БОРА 

Опыты подтвердили правильность ядерной модели атома Резерфорда, поэтому ученым пришлось признать ограниченность применения законов классической физики.
Первым решился на это признание выдающийся физик XX в. датский ученый Нильс Бор. В 1913 г. он, основываясь на разрозненных экспериментальных фактах, с помощью гениальной интуиции сформулировал в виде постулатов основные положения новой теории.

Изучая противоречия модели атома Резерфорда законам классисической физики Нильс Бор в 1913 г. выдвигает "постулаты", определяющие строение атома и условия испускания и поглощения им электромагнитного излучения.


Постулаты Бора показали, что атомы "живут" по законам микромира.


I постулат - постулат стационарных состояний:


В атоме существуют стационарные квантовые состояния, не изменяющиеся с течением времени без внешнего воздействия на атом.

В этих состояниях атом не излучает электромагнитных волн, хотя и движется с ускорением.
Каждому стационарному состоянию атома соответствует определенная энергия атома.
Стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны.

II постулат правило частот:


При переходе атома из одного стационарного состояния в другое излучается или поглощается 1 фотон.


а) Атом излучает 1 фотон(который несет 1 квант энергии), когда электрон переходит из состояния с большей энергией (Е k) в состояние с меньшей энергией (Е n).


Энергия излученного фотона:





Здесь (Ek - En) - разность энергий стационарных состояний.

При Ек > Eп происходит излучение фотона.
Частота излучения:



где k и n - номера стационарных состоянии, или главные квантовые числа.


б) Атом поглощает 1 фотон, когда переходит из стационарного состояния с меньшей энергией (E n) в стационарное состояние с большей энергией (E k).

При Ек < Еn происходит поглощение фотона.

После экспериментальных проверок правильности модели атома Резерфорда и принятия постулатов Бора ученым пришлось признать ограниченность применения законов классической физики для микроскопических тел.


Модель атома водорода по Бору


Свои постулаты Н. Бор применил для построения теории строения простейшего атома (атома водорода).


Согласно этой теории Бор смог вычислить для атома водорода:


- возможные радиусы орбит электрона и размеры атома

- энергии стационарных состояний атома
- частоты излучаемых и поглощаемых электромагнитных волн.

Распределение энергетических уровней при излучении (испускании) и поглощении атомом водорода электромагнитных волн:



....


При (n = 1) - основное энергетическое состояние, ему соответствует радиус орбиты электрона r = 0,5 • 10 -11 м.

При (n больше 1) - возбужденные состояния.
При поглощении атомом кванта энергии (фотона) атом переходит в возбужденное состояние, при этом электрон переходит на более отдаленную орбиту и его связь с ядром слабеет.

Переходы в первое возбужденное состояние (Е2) с верхних уровней соответствует частотам видимой части (кр з с с) спектра водорода.


Линечатый спектр атома водорода состоит из линий, сгруппированных в серии.






Частоты каждой серии спектра можно подсчитать по формуле Бальмера-Ритберга:






В спектре водорода обнаружены следующие серии:


n = I - серия Лаймана - ультрафиолетовое излучение

n = 2 - серия  Бальмера  - видимое излучение
n = 3 - серия Пашена - инфракрасное излучение и т.д.

Однако, надо помнить, что для атомов с большим числом электронов ( больше 1) расчеты по теории Бора неприменимы.


P.S. Надо помнить!


Движение электрона в атоме  мало похоже на движение  планет по орбитам.

Точнее, электрон на орбите можно назвать электронным облаком, имеющим разную плотность.
Орбитой электрона в атоме  называется геометрическое  место точек, в которых с наибольшей вероятностью можно обнаружить электрон.

Энергия в атомной физике  измеряется в электронвольтах.

1эВ – это  энергия электрона, проходящего разность потенциалов в 1В.
1эВ = 1,6 х 10 -19 Дж


ИНТЕРЕСНО О НИЛЬСЕ БОРЕ



Нильс Бор увидел во сне модель атома. Это было солнце из горящего газа, вокруг которого вращались связанные с ним тонкими нитями планеты. Внезапно газ затвердел, а солнце и планеты резко уменьшились в размерах.
___

Когда всемирно известный физик Нильс Бор бежал из оккупированной фашистами Дании на крохотном судне, наиболее ценным предметом его багажа была бутылка из-под пива. Это была "тяжелая вода", необходимая для производства водородной бомбы.

___

У великого физика Нильса Бора был один хорошо заметный людям недостаток –косноязычие перед аудиторией.

А его брат Харальд Бор, известный математик, имел некоторое достоинство, прямо противоположное недостатку своего брата. Харальд объяснял это так: "Причина простая, я всегда объясняю то, о чем говорили и раньше, а Нильс объясняет то, о чем будут говорить позже"/
___

Профессор Ниль Бор был одним из столпов квантовой механики. Десятки раз он становился доктором, профессором, иностранным членом различных академий, лауреатом множества премий и даже стал кавалером ордена Слона, вручавшегося лишь членам королевских фамилий и правителям государств. Для этого ему даже пришлось изобрести собственный герб. Надпись на гербе соответствовала его любимому принципу дополнительности: "Contraria sunt complementa" (Противоположности суть дополнительности).

___

Братья Нильс и Харальд Бор, оба  с научным складом ума: физик и математик,  были в молодости известны как хорошие футболисты.  Но в науке более преуспел старший брат Нильс, получивший  Нобелевскую премию по физике.  В 1922 году одна датская газета оповестила читателей: "Любимцу публики, известному футболисту Нильсу Бору  присуждена Нобелевская премия".  Знаменитый физик  был настолько талантливым футболистом, что не раз выступал за сборную Дании.

Электромагнитные волны

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:
Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.
Максвелл высказал гипотезу о существовании и обратного процесса:
Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.
Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.
Рисунок 2.6.1.
Закон электромагнитной индукции в трактовке Максвелла
Рисунок 2.6.2.
Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле
Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла). Из теории Максвелла вытекает ряд важных выводов:
1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы  и  перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3).
Рисунок 2.6.3.
Синусоидальная (гармоническая) электромагнитная волна. Векторы  и  взаимно перпендикулярны
2. Электромагнитные волны распространяются в веществе с конечной скоростью
Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные:ε0 = 8,85419·10–12 Ф/мμ0 = 1,25664·10–6 Гн/м.
Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.
Скорость электромагнитных волн в вакууме (ε = μ = 1): 
Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.
Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.
3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм
Отсюда следует, что в электромагнитной волне модули индукции магнитного поля  и напряженности электрического поля  в каждой точке пространства связаны соотношением 
4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная 
ΔWэм = (wэ + wмSΔt.
Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади: 
Подставляя сюда выражения для wэwм и υ, можно получить: 
Поток энергии в электромагнитной волне можно задавать с помощью вектора  направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ0. Этот вектор называют вектором Пойнтинга.
В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно 
где E0 – амплитуда колебаний напряженности электрического поля.
Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м2).
5. Из теории Максвелла следует, что электромагнитные волны должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены П. Н. Лебедевымв 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.
Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущмеханический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением 
где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.
Для поля в единичном объеме 
Отсюда следует:
Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.
Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.
6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света.
Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А. С. Попов, 1895 г.).
7. Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.
Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь,дипольный момент p (t) которого быстро изменяется во времени.
Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 2.6.4).
Рисунок 2.6.4.
Элементарный диполь, совершающий гармонические колебания
Рис. 2.6.5 дает представление о структуре электромагнитной волны, излучаемой таким диполем.
Рисунок 2.6.5.
Излучение элементарного диполя
Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн.

Механическая волна

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды с течением времени передаются к её остальным частям. Так от камня, брошенного в спокойную воду озера, кругами расходятся волны, которые со временем достигают берега. Колебания сердца, расположенного внутри грудной клетки, можно ощутить на запястье, что используется для определения пульса. Перечисленные примеры связаны с распространением механических волн.
  • Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.
    Заметим, что механические волны не могут распространяться в вакууме.
Источником механической волны является колеблющее тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в среде с определенной скоростью, зависящей от плотности и упругих свойств среды.
Подчеркнем, что при распространении волны отсутствует перенос вещества, т. е. частицы только колеблются вблизи положений равновесия. Среднее смещение частиц относительно положения равновесия за большой промежуток времени равно нулю.

Основные характеристики волны

Рассмотрим основные характеристики волны.
  • Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.
  • Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом.
Луч указывает направление распространения волны.

В зависимости от формы фронта волны различают волны плоские, сферические и др.
В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны. Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня .

Рис. 2
В сферической волне волновые поверхности представляют собой концентрические сферы. Сферическую волну может создать пульсирующий в однородной упругой среде шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Лучами являются радиусы сфер (рис. 2).
Основными характеристиками волны:
  • амплитуда (A) — модуль максимального смещения точек среды из положений равновесия при колебаниях;
  • период (T) — время полного колебания (период колебаний точек среды равен периоду колебаний источника волны)

T=tN,

где t — промежуток времени, в течение которого совершаются N колебаний;
  • частота (ν) — число полных колебаний, совершаемых в данной точке в единицу времени

ν=Nt.

Частота волны определяется частотой колебаний источника;
  • скорость (υ) — скорость перемещения гребня волны (это не скорость частиц!)
  • длина волны (λ) — наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника

λ=υT.

Для характеристики энергии, переносимой волнами, используется понятие интенсивности волны (I), определяемой как энергия (W), переносимая волной в единицу времени (t = 1 c) через поверхность площадью S = 1 м2, расположенную перпендикулярно к направлению распространения волны:

I=WSt.

Другими словами, интенсивность представляет собой мощность, переносимую волнами через поверхность единичной площади, перпендикулярно к направлению распространения волны. Единицей интенсивности в СИ является ватт на метр в квадрате (1 Вт/м2).

Уравнение бегущей волны

Рассмотрим колебания источника волны, происходящие с циклической частотой ω (ω=2πν=2πT) и амплитудой A:
x(t)=Asin(ωt),
где x(t) — смещение источника от положения равновесия.
В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна υ, то зависимость от времени t координаты (смещение) x колеблющейся точки, находящейся на расстоянии r от источника, описывается уравнением
x(t,r)=Asinω(trυ)=Asin(ωtkr),(1)
где k —волновое число (k=ωυ=2πλ),φ=ωtkr — фаза волны.
Выражение (1) называется уравнением бегущей волны.
Бегущую волну можно наблюдать при следующем эксперименте: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна.

Продольная и поперечная волны

Различают продольные и поперечные волны.
  • Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны.

Рис. 3
Рассмотрим подробнее процесс образования поперечных волн. Возьмем в качестве модели реального шнура цепочку шариков (материальных точек), связанных друг с другом упругими силами (рис. 3, а). На рисунке 3 изображен процесс распространения поперечной волны и показаны положения шариков через последовательные промежутки времени, равные четверти периода.
В начальный момент времени (t1=0) все точки находятся в состоянии равновесия (рис. 3, а). Если отклонить шарик 1 от положения равновесия перпендикулярно всей цепочки шаров, то 2-ой шарик, упруго связанный с 1-ым, начнет двигаться за ним. Вследствие инертности движения 2-ой шарик будет повторять движения 1-ого, но с запаздыванием во времени. Шар 3-й, упруго связанный со 2-ым, начнет двигаться за 2-ым шариком, но с еще большим запаздыванием.
Через четверть периода (t2=T4) колебания распространяются до 4-го шарика, 1-ый шарик успеет отклониться от своего положения равновесия на максимальное расстояние, равное амплитуде колебаний А (рис. 3, б). Через полпериода (t3=T2) 1-ый шарик, двигаясь вниз, возвратится в положение равновесия, 4-ый отклонится от положения равновесия на расстояние, равное амплитуде колебаний А (рис. 3, в). Волна за это время доходит до 7-го шарика и т.д.
Через период (t5=T) 1-ый шарик, совершив полное колебание, проходит через положение равновесия, а колебательное движение распространится до 13-ого шарика (рис. 3, д). А дальше движения 1-го шарика начинают повторяться, и в колебательном движение участвуют все больше и больше шариков (рис. 3, д).


Поперечные волны вызывают звучание струн музыкальных инструментов при их возбуждении.
  • Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн.
Продольную волну легко получить с помощью длинной пружины, которая лежит на гладкой горизонтальной поверхности и один конец ее закреплен. Легким ударом по свободному концу В пружины мы вызовем появление волны (рис. 5). При этом каждый виток пружины будет колебаться вдоль направления распространения волны BC.

Примерами продольных волн являются звуковые волны в воздухе и жидкости. Упругие волны в газах и жидкостях возникают только при сжатии или разрежении среды. Поэтому в таких средах возможно распространение только продольных волн.
Волны могут распространяться не только в среде, но и вдоль границы раздела двух сред. Такие волны получили название поверхностных волн. Примером данного типа волн служат хорошо знакомые всем волны на поверхности воды.

Специально для 11 класса, кто желает сдавать ЕГЭ

Для подготовки: Демо версия 2014 года
                             Кодификатор 2014 года
                             Спецификация 2014 года

Колебательный контур

Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний. 

    ответы на экзамен
         Электромагнитные колебания — это колебания электрических и магнитных полей, которые сопровождаются периодическим изменением заряда, тока и напряжения. Простейшей системой, где могут возникнуть и существовать электромагнитные колебания, является колебательный контур. Колебательный контур — это система, состоящая из катушки индуктивности и конденсатора (рис. 41, а). Если конденсатор зарядить и замкнуть на катушку, то по катушке потечет ток (рис. 41, б). Когда конденсатор разрядится, ток в цепи не прекратится из-за самоиндукции в катушке. Индукционный ток, в соответствии с правилом Ленца, будет течь в ту же сторону и перезарядит конденсатор (рис. 41, в). Ток в данном направлении прекратится, и процесс повторится в обратном направлении (рис. 41, г). Таким образом, в колебательном контуре будут происходить электромагнитные колебания из-за превращения энергии электрического поля конденсатора ответы на экзамен в энергию магнитного поля катушки с током ответы на экзамен , и наоборот.         Период электромагнитных колебаний в идеальном колебательном контуре (т. е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по         формуле Томсона ответы на экзамен . Частота с периодом связана обратно пропорциональной зависимостью         В реальном колебательном контуре свободные электромагнитные колебания будут затухающими из-за потерь энергии на нагревание проводов. Для практического применения важно получить незатухающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять электроэнергией, чтобы скомпенсировать потери энергии. Для получения незатухающих электромагнитных колебаний применяют генератор незатухающих колебаний, который является примером автоколебательной системы.

при использовании материала с сайта:http://kaf-fiz-1586.narod.ru

Гармонические колебания

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными.
Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения.
Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.
Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис. 2.1.1).
Механические колебательные системы 1
Рисунок 2.1.1. Механические колебательные системы.
Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденнымиСвободные колебания совершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными(см. §2.5). Простейшим видом колебательного процесса являются простые гармонические колебания, которые описываются уравнением
x = xm cos (ωt + φ0).
  Здесь x – смещение тела от положения равновесия, xm – амплитуда колебаний, то есть максимальное смещение от положения равновесия, ω – циклическая или круговая частота колебаний, t – время. Величина, стоящая под знаком косинуса φ = ωt + φ0 называется фазой гармонического процесса. При t = 0 φ = φ0, поэтому φ0 называют начальной фазой. Минимальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний T. Физическая величина, обратная периоду колебаний, называется частотой колебаний:
 Гармонические колебания
  Частота колебаний f показывает, сколько колебаний совершается за 1 с. Единица частоты – герц (Гц). Частота колебаний f связана с циклической частотой ω и периодом колебаний T соотношениями:
 Гармонические колебания
  На рис. 2.1.2 изображены положения тела через одинаковые промежутки времени при гармонических колебаниях. Такую картину можно получить экспериментально при освещении колеблющегося тела короткими периодическими вспышками света (стробоскопическое освещение). Стрелки изображают векторы скорости тела в различные моменты времени.
Стробоскопическое изображение  2
Рисунок 2.1.2. Стробоскопическое изображение гармонических колебаний. Начальная фаза φ0 = 0. Интервал времени между последовательными положениями тела τ = T / 12.
Рис. 2.1.3 иллюстрирует изменения, которые происходят на графике гармонического процесса, если изменяются либо амплитуда колебаний xm, либо период T (или частота f), либо начальная фаза φ0.
Во всех трех случаях для синих кривых 3
Рисунок 2.1.3. Во всех трех случаях для синих кривых φ0 = 0: а – красная кривая отличается от синей только большей амплитудой (x'm > xm); b – красная кривая отличается от синей только значением периода (T' = T / 2); с – красная кривая отличается от синей только значением начальной фазы ( Гармонические колебания
             рад).
При колебательном движении тела вдоль прямой линии (ось OX) вектор скорости направлен всегда вдоль этой прямой. Скорость υ = υx движения тела определяется выражением
 Гармонические колебания
  В математике процедура нахождения предела отношения  Гармонические колебания
 при Δt → 0 называется вычислением производной функции x(t) по времени t и обозначается как  Гармонические колебания
 или как x'(t) или, наконец, как  Гармонические колебания
. Для гармонического закона движения  Гармонические колебания
 вычисление производной приводит к следующему результату:
 Гармонические колебания
  Появление слагаемого +π / 2 в аргументе косинуса означает изменение начальной фазы. Максимальные по модулю значения скорости υ = ωxm достигаются в те моменты времени, когда тело проходит через положения равновесия (x = 0). Аналогичным образом определяется ускорение a = ax тела при гармонических колебаниях:
 Гармонические колебания
следовательно, ускорение a равно производной функции υ(t) по времени t, или второй производной функции x(t). Вычисления дают:
 Гармонические колебания
  Знак минус в этом выражении означает, что ускорение a(t) всегда имеет знак, противоположный знаку смещения x(t), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0). На рис. 2.1.4 приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.
Графики координаты  4
Рисунок 2.1.4. Графики координаты x(t), скорости υ(t) и ускорения a(t) тела, совершающего гармонические колебания.


Видео "Фаза колебаний"


При использовании материала с сайта: http://fizika.ayp.ru

Комментариев нет:

Отправить комментарий